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Computer viruses spread by attaching to an e-mail message and sending themselves to users whose ad-
dresses are in the e-mail address book of the recipients. Here we investigate a simple model of an evolving
e-mail network, with nodes as e-mail address books of users and links as the records of e-mail addresses in the
address books. Within specific periods, some new links are generated and some old links are deleted. We study
the statistical properties of this e-mail network and observe the effect of the evolution on the structure of the
network. We also find that the balance between the generation procedure and deletion procedure is dependent
on different parameters of the model.
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I. INTRODUCTION

In the past decades, the structures of various networks in
the real world have been well studied by many researchers.
Erdös and Rènyi first introduced random-graph theory in
1959 [1], in which edges are distributed randomly and the
presence or absence of any edge between two nodes in the
network is dependent on a fixed connection probabilityp.
Some further mathematical development of random-graph
theory is described in[2]. It has been found that the degree
distribution of a random graph networks follows a Poisson
distribution,

Pskd = Sn

k
Dpks1 − pdN−k .

zke−z

k!
, k ù 0.

Numerous networks, particularly in epidemiology studies,
have been viewed and analyzed as random graphs. However,
random graphs fail in describing the structural properties of
some real-world networks. The study of networks such as
networks of movie actor collaboration[3,4], science collabo-
ration [5], WWW [6,7], and Internet[8] found that the de-
gree distribution of these networks deviates measurably from
a Poisson distribution, but follows a power-law distribution:
Pskd,k−r. It indicates that the networks can self-organize to
a scale-free state, where some highly connected “hub” nodes
strongly affect the structure and dynamics of the networks. In
1999, Barabàsi and Albert presented in[4] that the origin of
this scale-free behavior was found to be a consequence of
two mechanisms: growth of nodes and preferential attach-
ment to well connected nodes.

The understanding of topological and statistical properties
of these networks is becoming very important. The methods
for measuring a network’s topology such as degree distribu-
tion, average path length, and clustering coefficient have
been illustrated in[9–11].

Networks with scale-free behaviors are robust to the fail-
ure of some node. In contrast, they are very vulnerable to
attack since the direct attack to “hub” nodes could cause
severe damage to the entire network. Therefore, currently,
the spread of infection becomes of special interest in the
study of complex networks. Some research has been done to
investigate how the connectivity of these networks affects
the spread of human diseases and computer viruses[12,13].

Currently, many computer viruses spread through a net-
work by attaching to an e-mail message and sending them-
selves to many other people whose e-mail addresses are in
the recipient’s e-mail address book, a file containing a list of
e-mail addresses of frequent correspondents. This structure
does not have to be the address book as implemented in most
e-mail software, it can also just be a file with e-mails that are
used to send new e-mails.

Some research work[14,15] used real data from server
log files or address books of large computer systems and
applied the data in computing the statistical properties. Their
results show that the e-mail networks display scale-free and
small-world behaviors, indicating that viruses are easy to
spread in real e-mail networks.

In our studies, our emphasis is different from other re-
search work:(i) we construct an e-mail network model that is
intermediate in sophistication between the simplified models
needed for application of statistical physics methods, and
models of the real world that require numerous parameters;
(ii ) in the line of our previous work on dynamic behavior of
a network in [16], we regard our e-mail address network
model as an evolving network, in which links can be added
and deleted periodically based on some rules. This is
different from the two mechanisms in Barabàsi’s scale-free
model [4].

In [14], it is shown that removing some suitably selected
vertices or disabling the account of the most connected node
can slow down the spread of a virus through the network and
save some time for a patch. In this paper, we assume users in
the network organize their e-mail address book periodically
by deleting and adding some e-mail addresses of users. In
this paper, we perform an analysis of our model. We also
present the results of our simulation with different parameter
settings to analyze the effects of evolution on the structure of
the e-mail address network.

II. THE EVOLVING E-MAIL ADDRESS
NETWORK MODEL

E-mail networks are quite different from the networks
mentioned above in that some social networks were modeled
as bipartite graphs and some as undirected graphs, while
e-mail networks are directed graphs, indicating that each link
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in the network has a direction. In our model, the nodes of the
e-mail network represent e-mail address books of different
users, which are connected by links running from user A to
user B if B’s e-mail address is in A’s e-mail address book.

We construct an e-mail network withN nodes, and in
order to investigate the scalability of the network, the size of
the network is increased in different simulations. We attempt
to create a simple virtual e-mail exchange network as fol-
lows: at each time step, we assume that an individual user in
the network sends a specific amount of e-mails to all the
users in the network. We denote the number of e-mails sent
from the source nodei to the target nodej by kij . Then the
total number of e-mailsE exchanged in the network within
each time step is

E = o
i=1

N

o
j=1

N

kij , kij = 0,1,2, . . . . s1d

Here, users are allowed to send e-mails to themselves be-
cause people usually use this to save or transfer some files, or
to test whether their e-mail boxes are working. Users who
receive these e-mails from the sender are selected randomly
in the network.

At the initialization stagest=1d, the network is built up by
connecting every source node to all its target nodes with an
individual link if at least one e-mail has been sent from the
source node to the target nodes. The connectivity of this
network can be represented by anN3N adjacency matrix C.
The value of an elementCij is either one or zero, indicating
that there is a link running from source nodei to target node
j or vice versa,

Cijs1d = H1, kijs1d ù 1,

0, kijs1d = 0.
s2d

After the initialization stage, the e-mail network evolves
following the rules of generation and deletion.

Generation. We let all users in the network check the
amount of e-mails that have been sent from them to other
users everytg time units. Heretg indicates how often we
carry out the generation procedure. Within periodtg, if the
number of e-mail contacts from source nodei to target node
j exceeds the generation thresholdg, nodej ’s e-mail address
should appear in nodei ’s e-mail address book, corresponding
to a link running fromi to j . In this case, we add a link from
i to j if there is no link existing. On the other hand, if there
is already a link existing, the connectivity will not change.
Thus the connectivity after the generation procedure can be
presented as

Cijst + tgd = HCijstd + DC, Dkijstgd . g,

Cijstd, Dkijstgd ø g,
s3d

whereDC=s1−Cijd, indicating that whenCijstd is zero (no
link existing), add 1 to the new value ofCij and whenCijstd
is 1 (link exising), add 0(no change) to the new value. The
Dkijstgd is the number of e-mails sent from source notei to
target nodej within period tg,Dkijstgd=kijst+ tgd−kijstd.

Deletion. As discussed in Sec. I, we can clean up the
e-mail address book periodically to slow down the spread of

viruses through the network. Within every restricted period
td, users check the amount of e-mails sent from them to other
users; if they find that the amount to some users whose ad-
dresses are already in their address books is less than the
deletion thresholdd, they delete these e-mail addresses. This
corresponds to the situation when the links running from
source nodes to the seldom contacted nodes are no longer
existing in the network. Thus the connectivity of nodes in the
network after the deletion procedure can be shown as

Cijst + tdd = HCijstd, Dkijstdd . d,

0, Dkijstdd ø d,
s4d

where Dkijstdd is the number of e-mails sent from source
node i to target notej within period td, Dkijstdd=kijst+ tdd
−kijstd.

By investigating the connectivityCij , we can further study
how these parameters illustrated above such asg, d, td, tg
affect the structural properties of the evolving e-mail net-
work, e.g., average number of links in the network, average
path length, clustering coefficient. This will be shown in
Sec. IV.

Recently, some studies[17,18] show that it is important
and feasible to investigate statistical properties of complex
networks by assigning weights to edges as in complex net-
works. Particularly,[17] shows how the strength of the rela-
tions in e-mail networks can be measured. Moreover, the
mechanism called preferential exchange based on the idea of
positive feedback has been found suitable to model e-mail
networks. For our model, it is a possible direction for further
studies to assign weights of edges according to the amount of
e-mail exchanged over links, so that some other network
properties, such as vertex strength in[18] which is in terms
of weights and adjacency matrix, can be investigated just as
the structural properties that we have studied in this paper.
We can also study the effects of parameters correlating with
generation and deletion procedures discussed in the paper on
structural properties which incorporate the weights of the
connections. Moreover, comparison of results can be made
between models using preferential exchange and preferential
attachment.

III. ANALYSIS OF THE MODEL

Erdös discovered that the probabilistic method can be
used in solving problems in graph theory. Some research
presents methods to calculate the edge probabilities as
in [19].

According to the description in Sec. II, in our model the
probability of obtaining a direct link from one node to an-
other node depends on whether there are enough e-mails sent
from source node to target node. In addition, the threshold of
generating linksg and deleting old linksd, the generation
interval stgd, and deletion intervalstdd, also play very impor-
tant roles on the evolution of e-mail networks.

We model the e-mail sent from source nodei to target
node j as the event where nodei selects some target nodes
among all the nodes in the network. In this way, the analyti-
cal study of our model can be started by computing the
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probability of each node being selected by nodei for kij
times, 0økij øk. We use a statistical method named gener-
alized Bernoulli trials[20], which is used to calculate the
probability of events occurring different times to address the
problem.

The size of the network isN, and at each time step, every
source node sendsk e-mails to other nodes. Some nodes can
be selected as target node more than once, representing that a
user can send more than one e-mail to any user, even itself.
We denote the event in which each individual node is se-
lected as receiver bya1,a2, . . . ,aN with

p1 = p2 = ¯ = pN =
1

N
s5d

in our model. Therefore, as in the case of generalized Ber-
noulli trials, the probability of the event{a1 occursk1 times,
a2 occursk2 times, . . . , aN occurskN times} is

Pnsk1,k2, . . . ,krd =
n!

k1 ! k2 ! ¯ kN!
S 1

N
Dn

, s6d

wheren is the amount of e-mails sent from node 1 to others
within a specific period.

Thus, if we know the values ofhk1,k2, . . . ,kNj, the prob-
ability in Eq. (6) above can be calculated, so that the prob-
ability of one node havingm outgoing links can be further
studied.

We have written a program to get all the combinations of
vectorsk for every specificm. However, we found that the
computation time required to calculate them is exponential in
the size of the network, making it impractical for further
analysis.

IV. SIMULATION RESULTS

We now investigate the effects of different parameter set-
tings on the topology of our model, by simulation. We con-
struct the e-mail address network according to the model
description in Sec. II.

A. Case I: Equivalent e-mail contact

First, we assume that at each time step, useri sendski
=k=20 e-mails to other randomly selected users. Although
this assumption may not be an exact scenario in the real
world, since a person with more e-mail addresses will prob-
ably send more e-mails than a person with a small e-mail
address book, this simplification is made as a starting point
of our analysis. In Sec. IV B, we will illustrate the case in
which e-mails are sent from useri, ki relates to the degree of
nodei, or the size of useri ’s address book.

1. Average number of links

The simulations for investigating the average number of
links ran for 2000 time steps and the number of nodes in the
network is set toN=1000. We denote the number of links
connected to nodei by Ei, thus the average number of links
for the whole networkE is

E =
1

No
i

Ei . s7d

The result of how the generation thresholdg and deletion
thresholdd affect E is shown in Figs. 1(a) and 1(b), respec-
tively. We carried out numerous simulations keeping genera-
tion interval tg=14 and deletion intervaltd=120 the same in
both studies ofg and d, while in order to investigate the
effect of generation thresholdg, we fixedd=1 with varying
g sg=2,3,4d, and to study the effect of deletion thresholdd,
the generation thresholdg was set tog=3 with varying d
sd=0,1,2d.

In Fig. 1, we find that the results agree well with the
assumptions of our model, as illustrated in Sec. II. The
graphs show a sawtooth pattern. This can be explained as
follows. The average number of linksE keeps increasing
with the continuous insertion in the generation procedures
for a period tg. After the deletion procedure is carried out
every td time steps, theE shows a sudden drop. The total
width of one “tooth” of the sawtooth pattern istd. Thus the
pattern ofE is not an implication of discontinuities, but the

FIG. 1. Effect of generation thresholdg and deletion thresholdd
on the average number of linksE, with a network size ofN
=1000.
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result of the increase and decrease ofE caused by the gen-
eration and deletion procedures. To further verify this, in-
stead of implementing discretetg and td, we have also run
simulations with generation and deletion interval following a
Poisson distribution for each user, such that the average istg
andtd. The results are presented in Fig. 2. We can see that the
form of E in Fig. 2 is similar to that in Fig. 1. But it shows
some slight difference in whichE varies irregularly within a
range in Fig. 2 instead of a clear “sawtooth” pattern in Fig. 1.

Furthermore, we can observe that in Fig. 1(a), the average
number of links in the networkE with smallerg is always
larger than with biggerg, where links are generated by the
continuous generation procedure according tog and deleted
by the deletion procedure according tod. This can be ex-
plained as follows: in this set of simulations, although source
nodes send the same amount of e-mails to some specific
nodes, it is more difficult for source nodes to generate links
to target nodes with the same deletion threshold and higher
generation threshold.

We also find in Fig. 1(a) that, as time elapses, the ten-
dency ofE reflects the relationship between the generation
and deletion effect on the network. If the generation proce-
dure effect is stronger than the deletion procedure as when
g=2s+d , the tendency ofE is increasing. In contrast, when
the generation threshold is high, asg=3s3d andg=4s•d, so
that the deletion effect is stronger,E tends to decrease. Fi-
nally, the two procedures balance each other, and the time
average(over a period larger thantd) of E in the network
becomes constant.

In Fig. 1(b), we can see that with three parameters( tg, td,
and g) fixed, E with smallerd is larger than with biggerd,
indicating that smallerd causes links between source node
and target node more likely to be deleted[refer to Eq.(4)].
Comparing(b) with (a), the deletion procedures shown in the
three graphs in(b) seem to dominate the process more than
the generation procedures. Especially with biggerd, as d
=1s3d and d=2snd, E decreases drastically at the early
stage of simulation and stays in the stable region aftert
=600, indicating that the two effects balance each other very
quickly.

In Fig. 3, we show the effect of generation time intervaltg
and deletion time intervaltd on E. In order to investigate
these effects, we fixed some parameters as follows:(i) for the
study of generation intervaltg [Fig. 3(a)], we setg=3, d=1,
and td=120 with varyingtg (tg=7, 14, and 21); (ii ) for the
study of deletion intervaltd [Fig. 3(b)], we fixedg=3, d=1,
and tg=14 with varyingtd (td=60, 120, and 180).

The evolution ofE in Fig. 3 is consistent with the settings
of time intervaltg andtd. We can observe that in(a), with the
sametd, E increases astg increases, and similarly in(b), with
the sametg, E increases astd increases. This is because
within longer period(biggertg andtd), generally, the number
of e-mails sent from one node to another is more than within
a shorter period so that it is easier to fulfill the requirement
of generating new links and, on the other hand, harder to
fulfill the requirement of deleting links. Furthermore, we ob-
serve that more apparently in(b), the time intervalTgrowth of
continuous growth ofE decreases astd decreases. This can
be explained as follows: as described in Sec. II and above,
the generation and deletion procedures are carried out in an
interlaced manner with asynchronoustg andtd. If the deletion

FIG. 2. Effect of generation thresholdg on the average number
of links with Poisson distribution and a network size ofN=1000:
g=2s+d ,3s3d ,4snd.

FIG. 3. Effect of generation time intervaltg and deletion time
interval td on the average number of linksE, with a network size of
N=1000.
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procedure is executed more frequently(smallertd), Tgrowth is
forced to be shorter.

We now investigate the scalability of our e-mail address
network. Figure 4 showsE versus different numbers of
nodes in the networkN at t=200 s+d, t=300 s+d, and t
=2000 s* d, respectively, with tg=14, td=120, g=2, and
d=1.

Some evolution characteristics of the network are dis-
played in Fig. 4: for one specificN, E increases as time
elapses(increasing t, along the vertical direction for eachN
from “+” to “ +” to “ * ” ). We find that the speed of increase of
E is faster in time interval[200, 300] than in [300, 2000],
indicating that the network evolves more quickly in the ear-
lier stage of evolution. Moreover, for small size networks
such asN=200, 300, and 400, we can see thatE reaches its
saturated status at the end of evolution, which means that the
network can easily become fully connected when there are
only a few nodes in the network. However, for a bigger size
of the network asN.400, the network cannot reach fully
connected status anymore, and asN increases, the increase of
E decreases and even changes to a minor increase afterN
=1100. This result is consistent with the assumption of
equivalent e-mail contact between users, resulting in users in
big size networks usually receiving fewer e-mails than in
small size networks.

2. Average path length

There is no closed formula to compute the average path
length , yet. But it is widely accepted that this, follows
some scaling form as a function of a network model’s pa-
rameters, e.g. size of networkN, connection probabilityp,
and so on.

In our simulation, we use the Dijkstra algorithm to com-
pute the shortest path length,i j between any two nodes: node
i and nodej . From this we can obtain the average path length
for the whole network as

, =
1

N2o
i
o

j

,i j , s8d

where i , j =1,2, . . . ,N. We fixed parameters astg=14, td
=120, g=2, and d=1 with different network sizes ofN
=200 s+d andN=300 s+d. The result of, versust with this
setting is shown in Fig. 5.

It is shown that withN=200 andN=300,, monotonously
decreases as time is elapsing until,=1. The ,=1 implies
that every node is directly connected to all other nodes in the
network, indicating the network is fully connected. Average
path lengths of different networks have been studied, and are
summarized in[11]. The average path length of “1” of our
model has not been confirmed by previous empirical re-
search. However, it is consistent with the algorithm used in
our model. At each time step, every node is assumed to send
k e-mails to other nodes in the network; in the cases of a
small size network such asN=200 andN=300 here, most of
the nodes are very likely to receive many e-mails, which
results in generation of links happening very frequently(ac-
cording to Sec. II). This makes our e-mail network become
fully connected with,=1 after a period of evolution. More-
over, we also think that because of the evolution of technol-
ogy, space and memory for personal e-mail address books
become bigger so that people always keep almost all of the
contact addresses in their address books. This indicates that
one node is very likely to connect directly to all other nodes,
resulting in a fully completed graph with the average path
length equal to “1”.

Furthermore, we found that the value of,N=300 s+d is big-
ger than the value of,N=200 s+d before they reach 1 and it
takes longer for,N=300 than,N=200 to reach 1. This result is in
accordance with the result shown in Fig. 4 under the same
setting, in which at the beginning of the evolution of the
networkEN=200.180 is closer to 200, the value ofN, com-
pared withEN=300.200 to 300. The average number of links
E increases untilEN=200=200 andEN=300=300 become fully

FIG. 4. Average number of linksE vs network sizeN at differ-
ent time stepst=200 s+d, t=300 s+d, and t=2000 s* d. Parameter
settings:tg=14, td=120,g=2, andd=1.

FIG. 5. Average path length, vs time t, with different network
sizes ofN=200 s+d and N=300 s+d. Parameter settings:tg=14, td
=120,g=2, andd=1.
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connected. Here we have not studied, for large size net-
works, because it takes a very long time to compute the
shortest path between any two nodes for the whole network.
But based on the analysis of results shown in Fig. 4 and Fig.
5, we may predict that, for a large size of networks, the
average path length would increase asN increases, thus it
cannot reach “1” as small size networks do.

3. Clustering coefficient

Clustering is another important property of networks to be
investigated. The definition of it is provided by the fraction
of fully connected triples(triangles) to the number of triples
of vertices in the network[21]. Thus the clustering coeffi-
cient C can be calculated by

C =
3 3 snumber of triangles in the networkd
snumber of connected triples of verticesd

. s9d

In our studies, we use an alternative definition ofC in
[3,11] because it is easier to calculate on a computer for
simulation,

Ci =
snumber of triangles connected to vertexid

snumber of triples centered on vertexid
. s10d

Then the average clustering coefficientC for the whole net-
work is (summation over all verticesi)

C =
1

no
i

Ci . s11d

To studyC, we set the parameters of our simulation as
g=2, d=1, tg=14, andtd=120. We compare theC of differ-
ent size networks asN=1000 andN=1100. The result is
shown in Fig. 6.

We observe that the clustering coefficientC fluctuates, but
within a range. The value ofC for smaller size networks
CN=1000s+d is always bigger than for larger size networks
CN=1100s+d. In [9,22], the studies on the statistical properties
of a network as a function of the network sizeN show that

for both of the random graph model and the Barabási-Albert
model, as the network sizeN increases, the average path
length increases while the clustering coefficient decreases.
For our model, results presented in Fig. 5 and Fig. 6 are in
accord with the indications. In Fig. 5, the average path length
of N=200 is smaller than, of N=300. On the other hand, the
clustering coefficient ofN=1000 is larger thanC of N
=1100 as in Fig. 6.

Here, we have studiedC on a large size network, and we
can make a prediction that the clustering coefficient of small
size networks would be larger than the results shown in
Fig. 6.

The time averages ofC are C̄N=1000=4.41310−2 and
C̄N=1100=3.14310−2, which are similar to the results shown
in [15].

This indicates that our e-mail network also has a charac-
teristic property of high clustering, namely as a small-world
network.

B. Case II: Degree-related e-mail contact

Having investigated the case of an equivalent number of
e-mail contacts between every individual node and other

FIG. 7. Effect of contact ratior on the average number of links
E, with a network size ofN=1000. Parameter settings:tg=14, td
=120,g=2, andd=1.

FIG. 6. Clustering coefficient C vs timet, with different network
sizes ofN=1000 s+d and N=1100 s+d. Parameter settings:tg=14,
td=120,g=2, andd=1.
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nodes as in case I, we now study the case that at each time
step, the number of e-mails sent from one node to others
relates to the size of the user’s address book. The amount of
e-mail sent from useri at each time stepki is controlled by a
constant contact ratior. Therefore, we defineki as kist+1d
=rEistd, whereEi is the degree of useri, or the size of user
i ’s address book.

First, we investigate the average number of linksE with
different contact ratior. Figure 7 shows the results of simu-
lations withtg=14,td=120,g=3, andd=1, (a) for r ø1, and
(b) for r .1, respectively. We find thatE is much smaller for
r ø1 than forr .1. In (a), whenr ø0.9, the average number
of links vanishes gradually as time elapses. For the case of
r =0.99 andr =1, althoughE decreases at the beginning, after
a time period, the tendency of decrease stops and nodes have
several connections in the network. In(b), E increases
steadily as time elapses until it reaches some value and re-
mains constant afterwards. This is more noticeable for bigger
values ofr such asr =1.5 andr =2.0.

Through large numbers of simulations with different pa-
rameters, we find it is observable that there exists an absorb-

ing state transition located at a specific value ofr, so that for
r øR, links in the network vanish gradually. On other hand,
for r .R, links increase progressively and the number of
links becomes constant at the end, as the results show in Fig.
7. However, the location of the absorbing state transition is
not fixed for simulations with different parameters. For the
simulation presented in this paper, it is located atr =R, where
0.9,R,1. We conjecture that the value ofR correlates with
settings of parameters.

In order to study the effects ofg, d, tg, andtd on E in this
case, we set the contact ratior =1.1, sokist+1d=1.1Eistd in-
stead ofki =20, while keeping other parameters the same as
in case I as follows:(i) for study ofg, tg=14,td=120,d=1,
and g=2,3,4; (ii ) for study of d, tg=14,td=120,g=3, and
d=0,1,2; (iii ) for study of tg, td=120,g=3,d=1, and tg
=7,14,21; (iv) for study of td, tg=14,g=3,d=1, and td
=60,120,180. Simulation results are shown in Fig. 8 and
Fig. 9.

In Fig. 8 and Fig. 9, we can see that the overall value ofE
in this case is much larger than in case I, but it is because of
the high contact ration that we have chosen. Moreover, we
observe that instead of the sawtooth pattern shown in graphs

FIG. 8. Effect of generation thresholdg and deletion thresholdd
on the average number of linksE, with a network size ofN
=1000.

FIG. 9. Effect of generation thresholdtg and deletion threshold
td on the average number of linksE, with a network size ofN
=1000.
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in case I,E appears to be more smooth in this case. Through
investigation of the amount of links having been generated
by the generation procedure at everytg, and links having
been deleted by the deletion procedure at everytd, we find
that the smoothness ofE is a result of the fact that there is
always only one of the two procedures dominating the net-
work so that the sawtooth pattern disappears, and we also
find that both of the two procedures play a lesser role on the
network when it is in the later stage of evolution. On the
other hand, in case I, because both the generation procedure
and the deletion procedure play important roles on the net-
work all the time, the deletion procedure can obviously re-
duce the increase ofE by continuous and even more frequent
(because values oftg are larger thantd) execution of the
generation procedure, resulting in the sawtooth pattern.
Therefore, we can predict that by strengthening effects of the
relatively weaker procedure, or by weakening effects of the
stronger procedure,E will appear with the sawtooth pattern
more likely than smooth behavior. For example, for the
graph represented by “o” in Fig. 8, it can be implemented by
increasingg andd or decreasingtg and td.

On the other hand, we find some similar effects of differ-
ent parameters onE to case I:(i) E increases asg or d
decreases, whileE increases, astg or td increases, as shown
in Fig. 8 and Fig. 9;(ii ) E with g=2 is significantly larger
than with g=3 andg=4 as in Fig. 8(a) and E with d=0 is
also significantly larger thanE with d=1 andd=2 in Fig.
8(b); (iii ) E tends to become stabilized in the later part of the
evolution process, as shown in Fig. 8 and Fig. 9. We find the
reason for this is that generation and deletion of links rarely
happen, soE remains unchanged after the network has
evolved for a while. However, in case I, although the time
average(over a period larger thantd) of E becomes constant,
this is because the two procedures happen continuously and
balance each other after a while.

Having studied case II with degree-related e-mail contact,
some similarities and some general laws of how different
parameters affect the properties of the network as shown in

case I with equivalent e-mail contact have been found.

V. CONCLUSION

In this paper, we have constructed and studied a novel
model of evolving e-mail networks with nodes as users’ ad-
dress books and links as the records of e-mail addresses in
the address books. Our model is close to the real world,
while still keeping the simulations feasible. We apply the
idea of the evolution to the network by generating and delet-
ing links within specific time intervals. The model has been
analyzed by using a probabilistic method and simulations.
Two cases of e-mail contact sent from one user to other users
at each time step have been considered in the simulations:(i)
equivalent e-mail contact,(ii ) degree-related e-mail contact.
For both cases, we find that the statistical properties of this
evolving e-mail network, such as average number of links,
average path length, and clustering coefficient, are strongly
affected by various parameter settings in simulations. We
observe that the average number of links tends to increase or
decrease depending on the values of generation and deletion
threshold, and also the time interval to execute the genera-
tion and deletion procedures. Furthermore, in case I, the ten-
dency of the average number of links and the sawtooth pat-
tern reflects the relationship between generation and deletion
procedures. Ultimately, the network reaches a stage at which
the time average(over a period larger thantd) of the number
of links in the network becomes constant. In case II, the
sawtooth pattern disappears andE becomes more smooth.
Moreover, by analyzing simulation results in case I, we ob-
serve that for small-sized networks, the average path length
between two nodes decreases as time elapses. With small
values of average path length and high clustering coefficient,
our evolving network exhibits small-world characteristic
properties.

The ideas of evolving e-mail networks presented in our
model can be also applied to model other real networks. This
will be the subject of further work.
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